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Locally compact groups and their representations

(I) We want to study infinite dimensional representations of
certain infinite, but very natural groups, such as GLn(R),
etc, and how they give rise to highly symmetric functions on
these groups (automorphic forms).

(II) The theory is MUCH harder than that of finite dimensional
representations of finite groups. All our representations will
be on topological C-vector spaces.

(III) Let G be a locally compact group, for instance R,GLn(R),
etc.

(IV) Even if we will focus on the case when G is a real Lie group
in this course, it is important to deal with other groups, such
as the ones above with R replaced by p-adic numbers or by
adeles (if you know what these animals are!).
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Locally compact groups and their representations

(I) Recall the famous but nontrivial result that on any such
group G there is a unique (up to positive scalars) positive
measure dg such that for any f ∈ Cc(G ) we have∫

G
f (x)dx =

∫
G
f (gx)dx

for all g ∈ G . We call such a measure a left Haar measure
on G .

(II) We say that G is unimodular if there is (equivalently any) a
left Haar measure that is also right-invariant. Most
interesting groups are unimodular (eg. compact groups,
GLn(R), abelian groups), but there are non-unimodular
natural groups, e.g. upper triangular matrices in GLn(R).
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Locally compact groups and their representations

(I) For simplicity we suppose from that on that G is unimodular.
A very interesting representation of G is that of G on the
space L2(G ) := L2(G , dg) of (equivalence classes of)
square-integrable functions. A fundamental problem is that
of ”decomposing” this representation into irreducible
representations of G .

(II) Things are tricky: if G = R one can show that L2(G ) has
NO irreducible sub-representation, which seems very strange!

(III) First, we need to make a bit more precise what kind of
representations of G we want to study.
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Locally compact groups and their representations
(I) For G as above we introduce the category

Rep(G )

of continuous representations of G on Fréchet spaces over
C. An object of Rep(G ) is thus a Fréchet space V with a
linear action of G such that each g ∈ G defines a continuous
map V → V and for each v ∈ V the orbit map
G → V , g → g .v is continuous (equivalently: the action
map G × V → V is continuous).

(II) Morphisms in Rep(G ) are continuous C-linear maps
respecting the G -action. We write HomG (V ,W ) for the
space of morphisms between V and W .

(III) Let V ∈ Rep(G ). A sub-representation of V is a CLOSED
subspace stable under the action of G . We say that V is
irreducible if the only sub-representations are 0 and V .
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Hilbert space representations

(I) In this lecture we will deal with the subcategory Hilb(G ) of
Rep(G ) consisting of V which are Hilbert spaces (separable,
by convention). It contains the subcategory Unit(G ) of
unitary representations, i.e. those V on which G acts by
unitary operators (i.e. isometries of V ).

(II) The unitary dual
Ĝ

is the set of equivalence classes of irreducible objects in
Unit(G ). So Ĝ classifies the irreducible unitary
representations of G .

(III) Describing Ĝ for a given G is in general a very hard problem,
but for many groups this can be done, with a LOT of work.
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Ĝ

is the set of equivalence classes of irreducible objects in
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Unit(G ). So Ĝ classifies the irreducible unitary
representations of G .
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Discrete series

(I) We can now reformulate the first fundamental problem:
given G , describe Ĝ and decide which π ∈ Ĝ ”contribute”
(i.e. are subquotients) to L2(G ).

(II) For instance, for which π ∈ Ĝ do we have
HomG (π, L2(G )) 6= 0? Such π are called square-integrable
or discrete series representations of G . They give rise to
a subset DS(G ) ⊂ Ĝ .

(III) For instance DS(R) = 0 and DS(SLn(R)) = 0 for n ≥ 3
(this is highly nontrivial!). So DS(G ) can be a tiny part of
Ĝ .
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Discrete series for SL2(R)

(I) Our favorite group in this course will be G = SL2(R). For
this group DS(G ) is infinite and can be described as follows.

(II) Let K = SO2(R), a maximal compact subgroup of G . To
construct the discrete series of G we will use the
analysis/geometry of the symmetric space G/K .

(III) As a G -topological space this is the same as the Poincaré
upper half-plane

H = {z = x + iy ∈ C| y > 0} = {z ∈ C| Im(z) > 0}.

Indeed, H has a natural action of G by

g .z =
az + b

cz + d

if g =

(
a b
c d

)
, the action is transitive (use upper triangular

matrices in G ) and the stabiliser of i ∈H is K .
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Discrete series for SL2(R)

(I) Now H is an open subspace of C, so we can talk about
holomorphic functions on H . Let O(H ) be the ring of such
functions. It has a natural action of G , induced by that of G
on H .

(II) We will ”twist” this action by some cocycles to get our
discrete series. Namely, consider the map

j : G ×H → C, j(g , z) = cz + d , g =

(
a b
c d

)
.

One easily checks that

j(gh, z) = j(g , hz)j(h, z).

(III) For an integer n we get an action of G on O(H ) by

g .f (z) = j(g−1, z)−nf (g−1.z).
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Discrete series for SL2(R)

(I) So explicitly

g−1.f (z) =
1

(cz + d)n
f (

az + b

cz + d
)

if g =

(
a b
c d

)
.

(II) The hyperbolic measure dxdy
y2 on H is G -invariant.

Consider the space (below z = x + iy)

DS+
n = {f ∈ O(H )| ||f ||2 :=

∫
H
|f (z)|2yn dxdy

y2
<∞}.

(III) It is a Hilbert space for the given norm (this is already not
trivial) and one can prove that it is preserved by the previous
action of G and is a unitary representation of G .
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Discrete series for SL2(R)

(I) We then have the nontrivial:

Theorem We have DS+
n ∈ DS(G ) for n ≥ 2.

(II) Keep the previous action (depending on n ≥ 2) on DS+
n and

define a new action ∗ on the same space by g ∗ f = g̃ .f

where g̃ = wgw−1 and w =

(
0 1
1 0

)
. This gives rise to a

new unitary representation of G , called DS−n .

Theorem The representations DS+
n and DS−m for m, n ≥ 2

are pairwise non isomorphic and DS(G ) consists precisely of
their isomorphism classes.



The unitary dual of SL2(R): principal series

(I) Keep G = SL2(R). We may wonder if the previous
construction gives the whole Ĝ . This is obviously false, since
the trivial representation is in Ĝ and not in DS(G ). Actually
there are many other representations in Ĝ .

(II) G has a unique (up to isomorphism) irreducible
representation of dimension n for each n ≥ 1, but as long as
n ≥ 2 this is not in Ĝ (great exercise!).

(III) The other elements of Ĝ are constructed by a process called
(parabolic) induction. Namely, let B be the subgroup of
upper-triangular matrices in G . Matrices in B are of the

form

(
a b
0 a−1

)
. Any (continuous) character χ : R∗ → C∗

gives rise to a character of B, namely χ(

(
a b
0 a−1

)
) = χ(a).
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(III) The other elements of Ĝ are constructed by a process called
(parabolic) induction. Namely, let B be the subgroup of
upper-triangular matrices in G . Matrices in B are of the

form

(
a b
0 a−1

)
. Any (continuous) character χ : R∗ → C∗

gives rise to a character of B, namely χ(

(
a b
0 a−1

)
) = χ(a).



The unitary dual of SL2(R): principal series

(I) Keep G = SL2(R). We may wonder if the previous
construction gives the whole Ĝ . This is obviously false, since
the trivial representation is in Ĝ and not in DS(G ). Actually
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The unitary dual of SL2(R): principal series

(I) Characters of R∗ are well understood: they are
χ(x) = sgn(x)ε|x |s with ε ∈ {0, 1} and s ∈ C (exercise).
Such χ is unitary if and only if s ∈ iR.

(II) Let δ : B → R>0 be the modulus character of B, sending(
a b
0 a−1

)
to a2 (this is related to the non-unimodularity of

B).

(III) Given a character χ, let I (χ) be the space of (measurable)
functions f : G → C such that ||f ||2 :=

∫
K |f (k)|2dk <∞

and f (bg) = χ(b)δ(b)1/2f (g) for b ∈ B and g ∈ G . It has
an action of G by right translation: g .f (x) = f (xg) (this is
not so obvious because of the L2 condition on K ...).
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The unitary dual of SL2(R): principal series

(I) The following result requires quite a bit of work:

Theorem If χ ∈ R̂∗ is a unitary character, then I (χ) is a
unitary representation of G , and it is irreducible precisely
when χ 6= sgn (sending x → x/|x |). Also I (sgn) is the direct
sum of two irreducible representations LDS+, LDS−, called
limits of discrete series. Moreover, I (χ) ' I (χ′) if and only
if χ′ ∈ {χ, χ−1}, and I (χ) and LDS± are not discrete series.



Complementary series for SL2(R)

(I) We still haven’t exhausted Ĝ ! There is another series of
representations, the quite mysterious complementary
series, indexed by s ∈ (−1, 1) nonzero (but the reps. for s
and for −s are isomorphic, so we can restrict to s ∈ (0, 1)).
These correspond to the characters χs(a) = |a|s , which are
not unitary. Still, the miracle is that one can find a
G -invariant inner product on I (χs) and by completion for
this inner product we obtain an object C (s) ∈ Ĝ , called the
complementary series with parameter s.



The unitary dual for SL2(R)

(I) We then have the magical result:

Theorem (Bargmann) Ĝ consists precisely of the trivial
representation, the discrete series DS±n (for n ≥ 2), the
limits of discrete series LDS±, the principal series I (χ) for

χ ∈ R̂∗ K {sgn} (up to χ→ χ−1) and the complementary
series C (s) for s ∈ (0, 1).

(II) How on earth can one prove something like this? Answer:
fine study of the actions of K and of the Lie algebra of G on
the smooth vectors of representations of G . This study can
be done in great generality and the remaining slides explain
some of the key results.
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Representations of compact groups
(I) Here G = K is a compact group. Then Rep(K ) looks very

much like the category of finite dimensional representations
of a finite group, thanks to the beautiful:

Theorem (Peter-Weyl) Any V ∈ K̂ is finite dimensional and
any V ∈ Hilb(K ) is the Hilbert direct sum of irreducible
representations. Moreover, as K × K -representations

L2(K ) '
⊕̂
π∈K̂

π ⊗C π
∗.

Here K × K acts on L2(K ) by (k1, k2)f (x) = f (k−1
1 xk2) and

on π ⊗ π∗ by (k1, k2)(v ⊗ l) = k1v ⊗ k2l . In particular in
Rep(K )

L2(K ) '
⊕̂
π∈K̂

πdimπ.



Representations of compact groups

(I) One can use the Peter-Weyl theorem to study Rep(G ) even
if G is not compact, by restricting V ∈ Rep(G ) to K and
looking at the subspace of K -finite vectors VK of V , i.e.
those v ∈ V for which Span(K .v) is finite dimensional.

(II) Simple arguments show that

VK '
⊕
π∈K̂

V (π),

where V (π) ' π ⊗HomK (π,V ) is the π-isotypic
component of V , i.e. the sum of all subspaces of V stable
under K and isomorphic to π as a K -rep.

(III) Representations appearing in nature are admissible, i.e.
dimV (π) <∞ for all π ∈ K̂ . Of course, this depends on the
choice of K , but not in practice, as we will see.
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under K and isomorphic to π as a K -rep.

(III) Representations appearing in nature are admissible, i.e.
dimV (π) <∞ for all π ∈ K̂ . Of course, this depends on the
choice of K , but not in practice, as we will see.
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Examples for SL2(R)

(I) Take G = SL2(R). One can prove (cf. later lectures) that
each π ∈ Ĝ is admissible with respect to the maximal
compact subgroup K .

(II) For instance, pick a unitary character χ(x) = (sgn(x))ε|x |it
with ε ∈ {0, 1} and t ∈ R. Suppose that χ 6= sgn.

(III) Now G = BK and B ∩ K = {±1}, thus restriction to K
induces an isometric isomorphism

I (χ) ' L2
ε(K ) := {f ∈ L2(K )| f (−k) = (−1)εf (k)}.

This is K -equivariant, for the usual action of K on the RHS.
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Examples for SL2(R)

(I) For n ∈ ε+ 2Z consider the map ϕn ∈ L2
ε(K ) defined by

ϕn(rθ :=

(
cos θ sin θ
− sin θ cos θ

)
) = e2iπnθ.

Then Fourier analysis gives

L2
ε(K ) =

⊕̂
n∈ε+2Z

Cϕn.

(II) For the discrete series DS+
n consider fn(z) = 1

(z+i)n and, for

j ≥ 0, fn,j(z) = fn(z)( z−iz+i )
j . One can prove that these

functions are in DS+
n (excellent exercise) and the action of K

on them is given by explicit characters:

rθ.fn = e−inθfn, rθ.fn,j = e−i(n+2j)θfn,j .
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Examples for SL2(R)

(I) One can then check that we have isomorphisms of
K -representations

DS+
n '

⊕̂
j≥0

(rθ → e−i(n+2j)θ), DS−n '
⊕̂
j≥0

(rθ → e i(n+2j)θ).

This makes it clear that DS+
n and DS−m are never isomorphic.



Linearizing the action of G

(I) We suppose now that G is a closed subgroup of GLn(R) for
some n ≥ 1. Then G has a natural structure of Lie group,
and its Lie algebra

g := {X ∈ Mn(R)| etX ∈ G ∀t ∈ R}

is an R-subspace of Mn(R) stable under
(X ,Y )→ [X ,Y ] := XY − YX .

(II) If G is connected, then eX (for X ∈ g) generate G as
abstract group, so we have a good control on G via g.

(III) If V ∈ Rep(G ), g has no reason to act on V , but we will see
that it acts naturally on a dense subspace of V , that of
smooth vectors.
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Linearizing the action of G

(I) More precisely, say v ∈ V is C 1 if for all X ∈ g the limit

X .v := lim
t→0

etX .v − v

t

exists in V . By induction, say v is C k if v is C 1 and X .v is
C k−1 for all X ∈ g.

(II) The subspace V∞ of smooth vectors (i.e. those which are
C k for all k) turns out to be a dense subspace of V , stable
under the action of G , and this action differentiates on it to
an action of g, i.e. for all X ,Y ∈ g and v ∈ V∞ we have

X .(Y .v)− Y .(X .v) = [X ,Y ].v .

(III) The passage V → V∞ is bad in general: it can happen that
V is irreducible and V∞ is not a simple g-module, and it can
happen that the closure in V of a g-stable subspace of V∞

is not G -stable.
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Linearizing the action of G
(I) Harish-Chandra fixed these annoying problems as follows:

• restrict the class of groups G to real reductive subgroups
of GLn(R). There are several possible definitions of a real
reductive group, depending on one’s taste/needs. For us it
will be a subgroup defined by polynomial equations (in the
matrix entries and the inverse of its determinant) with real
coefficients and stable under transpose (e.g. SLn(R)).

• restrict to admissible representations V .

• replace V∞ by the Harish-Chandra module of V

HC (V ) := VK ∩ V∞.

(II) HC (V ) is a purely algebraic object (no topology) having
compatible representations of g and K . Such gadgets are
called (g,K )-modules.



Linearizing the action of G
(I) Harish-Chandra fixed these annoying problems as follows:

• restrict the class of groups G to real reductive subgroups
of GLn(R). There are several possible definitions of a real
reductive group, depending on one’s taste/needs. For us it
will be a subgroup defined by polynomial equations (in the
matrix entries and the inverse of its determinant) with real
coefficients and stable under transpose (e.g. SLn(R)).

• restrict to admissible representations V .

• replace V∞ by the Harish-Chandra module of V

HC (V ) := VK ∩ V∞.

(II) HC (V ) is a purely algebraic object (no topology) having
compatible representations of g and K . Such gadgets are
called (g,K )-modules.



The fundamental theorem

(I) The result that makes everything work for the study of
(admissible) representations of real reductive groups is then:

Theorem (Harish-Chandra) Let G be a real reductive group
and let K be a maximal compact subgroup.
1) Any V ∈ Ĝ is admissible.
2) If V ∈ Rep(G ) is admissible, then HC (V ) = VK (i.e. all
K -finite vectors are smooth) and the sub-representations of
V are in bijection with g and K -stable subspaces of HC (V )
via the maps W →WK and X → X̄ (closure in V ).
In particular V is irreducible if and only if HC (V ) = VK is a
simple (g,K )-module.



An example: irreducibility of principal series for SL2(R)

(I) Let’s illustrate the previous theorem for G = SL2(R), a
unitary character χ(x) = (sgn(x))ε|x |it different from sgn.
For simplicity let’s suppose that t 6= 0.

(II) Recall that as K -modules

I (χ) ' L2
ε(K ) =

⊕̂
n∈ε+2Z

Cϕn,

with ϕn(rθ) = e2iπnθ. These ϕn are K -finite, so correspond
to some functions fn ∈ I (χ)K (which can be made quite
explicit). Moreover

I (χ)K '
⊕

n∈ε+2Z
Cϕn.
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An example: irreducibility of principal series for SL2(R)

(I) The action of g on I (χ)K ⊂ I (χ)∞ extends (by C-linearity)
to an action of gC = C⊗R g and for this action simple but
painful computations show that(

0 1
−1 0

)
fn = infn,

(
1 −i
−i −1

)
fn = (it + 1− n)fn−2,

(
1 i
i −1

)
fn = (it + 1 + n)fn+2.

(II) Using this one can easily check that I (χ)K is an irreducible
(g,K )-module. Let V ⊂ I (χ)K be a nonzero sub
(g,K )-module. Using that I (χ)K is a direct sum of
characters of K , it follows that fn ∈ V for some n. The
previous formulae then show that fn±2 ∈ V (the key point is
that it + 1± n 6= 0) and then by induction V contains all fn
and so V = I (χ)K .
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Lattices

(I) We make now the situation more arithmetic by introducing
besides the locally compact unimodular group G a lattice
Γ ⊂ G , i.e. a discrete subgroup such that Γ\G has finite
measure (with respect to the natural G -invariant measure
induced by the Haar measure on G ). The lattice is called
co-compact if Γ\G is compact.

(II) For instance, Zn is a co-compact lattice in Rn, while SLn(Z)
is a non-co-compact lattice in SLn(R) (this is not at all
obvious!).

(III) Reductive groups defined over Q and having finite center
give rise to lattices: Γ := G (Z) is a lattice in G (R). This is a
very deep theorem of Borel and Harish-Chandra. There are
also simple criteria to decide when this lattice is co-compact.
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Lattices

(I) The previous remark uses notions we haven’t introduced so
far, so let me give a completely explicit and already
nontrivial example. Let a, b be positive integers and consider
the set S of (x0, x1, x2, x3) ∈ Z4 such that
x2

0 − ax2
1 − bx2

2 + abx2
3 = 1. Define

Γ = {
(

x0 + x1
√
a x2 + x3

√
a

b(x2 − x3
√
a) x0 − x1

√
a

)
| (x0, x1, x2, x3) ∈ S}.

(II) Then Γ is a lattice in SL2(R) and it is co-compact if and
only if the equation x2 = ay2 + bz2 has only the trivial
solution (0, 0, 0) in integers.
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L2 and lattices

(I) Let Γ be a lattice in a locally compact unimodular group G .
Then L2(Γ\G ) with the natural action of G by right
translation is a unitary representation of G .

(II) Understanding this representation keeps people busy since
many years and will do so for many years. It is related to
many deep problems in number theory (Langlands program).

Theorem (Gelfand, Graev, Piatetski-Shapiro) If Γ is a
co-compact lattice in a locally compact group G , then there
is an isomorphism of unitary G -representations

L2(Γ\G ) '
⊕̂
π∈Ĝ

π ⊗HomG (π, L2(Γ\G ))

and HomG (π, L2(Γ\G )) are finite dimensional.
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The finiteness theorem

(I) The deepest result we will prove (more or less...) in this
course is

Theorem (Harish-Chandra) If Γ is an ”arithmetic lattice” in
a semisimple group G defined over Q, then for any

π ∈ Ĝ (R) we have

dimHomG (π, L2(Γ\G (R))) <∞.

Several objects above haven’t been introduced so far (we will
do this in future lectures), but you can safely suppose for
now that G = SLn in the above theorem and Γ = SLn(Z),
the theorem is already highly nontrivial in this case.



The finiteness theorem

(I) The theorem above is MUCH harder than the GGPS theorem
and the proof uses automorphic forms. If Γ is not
co-compact in G (R), the theorem does not say as much
about L2(Γ\G (R)) as the GGPS theorem: we no longer have
a discrete decomposition, there are ”continuous parts”
associated to Eisenstein series.

(II) It is an extremely difficult problem (already in the

co-compact case) to decide for which π ∈ Ĝ (R) we have

HomG (π, L2(Γ\G (R)) 6= 0.

(III) Spaces of the form HomG (π, L2(Γ\G (R)) are extremely
interesting, they give rise to highly symmetric functions on
the group, called automorphic forms.
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Back to earth

(I) Let’s take our favorite example G = SL2(R). Given a lattice
Γ ⊂ G , spectral theory and the previous results yield an
orthogonal decomposition of G -representations

L2(Γ\G ) = L2
disc ⊕ L2

cont,

where L2
disc is the Hilbert direct sum of all irreducible

sub-representations of L2(Γ\G ). Moreover we have an
analogue of the GGPS decomposition for the space L2

disc.

(II) The continuous part L2
cont is a direct integral of

representations
∫∞

0 π⊕nΓ
it dt, where πit is the principal series

corresponding to χt(x) = |x |it and nΓ is the number of
”cusps” of Γ (so 0 if Γ is co-compact, 1 if Γ = SL2(Z)).

(III) Thus complementary series C (s) can only occur in L2
disc.
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Back to earth

(I) Now let’s take π ∈ Ĝ such that πK 6= 0 (here πK is the space
of vectors fixed by K ). For instance π could be πit or C (s).
In all cases πK is actually one-dimensional, generated by a
smooth vector v (this follows from our explicit description of
the restriction to K of irreducible unitary representations).

(II) Suppose that ϕ : π → L2(Γ\G ) is a G -equivariant nonzero
map. Then f := ϕ(v) is a smooth vector in L2(Γ\G ) which
is K -invariant, so gives rise to a function
f ∈ C∞(Γ\G/K ) ' C∞(Γ\H ), which is square-integrable.
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Back to earth

(I) There is a hidden symmetry coming from higher-order
differential operators on G and on H . On H this is the
hyperbolic Laplacian

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
,

a self-adjoint operator commuting with the action of G .

(II) On G we have the Casimir operator. More precisely, g acts

on C∞(G ) by X .f (g) = limt→0
f (getX )−f (g)

t . Let’s see any
element of g as en endomorphism of C∞(G ). If X1,X2 ∈ g
we write X1X2 for the composition of these endomorphisms
of C∞(G ).



Back to earth

(I) There is a hidden symmetry coming from higher-order
differential operators on G and on H . On H this is the
hyperbolic Laplacian

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
,

a self-adjoint operator commuting with the action of G .

(II) On G we have the Casimir operator. More precisely, g acts

on C∞(G ) by X .f (g) = limt→0
f (getX )−f (g)

t . Let’s see any
element of g as en endomorphism of C∞(G ). If X1,X2 ∈ g
we write X1X2 for the composition of these endomorphisms
of C∞(G ).



Back to earth

(I) Now consider the basis

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
of g and the second-order differential operator (Casimir
operator)

C =
1

2
h2 + ef + fe.

(II) One can prove that C commutes with the actions of G by
left and right translation on C∞(G ). In particular C induces
a G -invariant operator on
C∞(G )K ' C∞(G/K ) ' C∞(H ). A painful computation
shows that via these isomorphisms

C/2 = ∆.
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Back to earth

(I) Let’s come back to our v ∈ πK and ϕ : π → L2(Γ\G ) and
f = ϕ(v). A version of Schur’s lemma shows that C acts on
π by a scalar, which can be computed explicitly in terms of
the classification. Now ϕ is G -equivariant, so C also acts on
f by the same scalar. Since C/2 = ∆, we deduce that
f ∈ C∞(Γ\H ) is an eigenfunction of ∆.

(II) The upshot is: elements of HomG (π, L2(Γ\G )) (with π
spherical, i.e. πK 6= 0) give rise to highly symmetric
functions f ∈ C∞(Γ\H ) square integrable solutions of the
spectral problem ∆f = λf . Here λ = 1

4 + t2 if π = πit
(t ∈ R) and λ = 1

4 − s2 if π = C (s) (s ∈ (0, 1)).
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